SWAN: Small-world Wide Area Networks

(Invited Paper — SSGRR 2003s)

Virgil Bourassa
and Fred B. Holt

Abstract— As an alternative to client-server architectures, we
have developed the Swan technology to support real-time interac-
tive applications. Providing a balanced multicast capability for ad
hoc communities, Swan weaves computer processes into a fabric
of TCP/IP connections. Using only local knowledge, these Swan
fabrics weave in new arrivals and repair around departures.

Our Swan solution for ad hoc networks is near-optimal.
Swan retains high reliability and logarithmic latency. Latencies
scale better than log-base-2 in the number of participants.
Swan handles multiple simultaneous arrivals and departures.
Swan enforces strong authentication but also provides other
opportunities for security.

This patented technology is currently used for collaborative
design reviews, meetings, multiplayer games and public safety
networks.

I. INTRODUCTION

The need has been increasing in collaborative workflow,
in Internet communities, and in distributed applications, for
an effective means to allow scalable and reliable sharing of
information across multiple processes. To enable world-wide
digital collaboration, programmers need a software mechanism
allowing dozens, hundreds, or perhaps thousands of participat-
ing computer processes to share information easily, quickly,
and reliably across the world.

This demand for more interaction among communities on
the Internet has been addressed primarily by client-server com-
munications infrastructures. The costs and administration of
the resulting server farms indicate the need for a more natural
solution. Completely connected peer-networks or rogue-server
models provide an alternative for small Internet communities.
For low-performance applications like file-sharing, a variety
of peer-to-peer solutions have emerged both commercially and
academically.

To address the demands of real-time interactive applications,
like multiplayer games or emergency networks, we developed
Small-world Wide Area Networks (Swan). Swan weaves com-
puter processes into a fabric of TCP/IP connections. These
fabrics have the topology of regular graphs, which provides
many benefits over trees. For example, Swan fabrics retain
high performance, reliability, and survivability, as a session
scales from a few to thousands of participating processes.

A. Design Constraints

In 1997 our initial target application was collaborative en-
gineering. At a large manufacturing company the engineering

groups wanted to hold design reviews across the Internet.
During these reviews there could be a dozen sites participating.
Not all sites were guaranteed to arrive on time nor to stay
throughout the review. Any participating site would have to
be able to lead the review at any time. The 3-D renderer,
parts database interface, and assembly-tree viewer would all
act as peer applications during the review. Regardless of
who initiated a review-event (e.g. calculation, measurement,
annotation, new viewpoint, part load/unload), the collaborative
performance should be comparable to the single-user perfor-
mance of these software tools.

This industrial application fixed the design constraints. The
solution would have to be secure and reliable. To solve this
collaboration problem for the given application-suite (renderer,
database, and assembly-tree) on the installed base of users, the
solution would have to be easily adopted and compatible with
a variety of existing network devices. Anticipating future re-
quirements and alternate uses, we added two more constraints:
the solution would be massively scalable, and its participants
would be true peers.

The requirement was to deliver a multicast capability in
which computer processes were the nodes. The majority of the
message traffic would be application-events. The performance
time-scales and tolerances were set by applications instead of
humans. In mid-1999 we delivered Small-world Wide Area
Networks (SWAN) into production use. Swan has all of the
following properties.

1) Secure: To be competitively secure against industrial
espionage, the solution must support strong authentication and
encryption.

2) Self-healing (Reliability I): No human administration is
required when a process joins or leaves the session. All the
properties are maintained automatically.

3) Robust under node-failures (Reliability II): The com-
munications structure and the message traffic must tolerate
graceful and ungraceful departures by nodes (consistent with
[1], an wungraceful departure occurs when a node leaves
without sending the proper control messages).

4) Compatible with existing network devices: No special
hardware is presumed to be available. The solution must be
widely adoptable today.

5) Easily adopted: The solution must have a simple API
that respects the current application architecture.

6) Massively scalable (Scalability I): There is no prede-
termined ceiling on the number of participants. The session
support costs do not become prohibitive with increased par-
ticipation.

7) High-performance (Scalability II): The latencies for
event-message traffic must scale acceptably with the number of
participants. The solution must make efficient use of available
bandwidth at every node.

8) True peers: At the communications level, every node
is equal. The multicast capability does not depend on hidden
servers or a preferred class of nodes. Only local knowledge
about the communications topology is stored.

B. Swan Solution

Swan provides general wide-area peer-to-peer communica-
tions among computer processes. It achieves this with high
reliability and low latency, scaling from a single process to
thousands of participating processes. The system is completely
distributed among the participants, which may join, depart, or
even fail, at any time and in any order.

The central innovation in Swan is weaving participating
processes together into regular random graphs, using generally
available point-to-point network protocols. We call the result-
ing topology of logical connections Swan fabrics. Swan avoids
synchronization difficulties by making use of the small-world
effect [14], [15], using only local knowledge to maintain global
properties of reliability and scalability. The Swan fabrics are
extended to include new participants and repaired around
departing participants with minimal and local disruptions.
Swan participants are true peers: self-contained members of a
completely self-sufficient communication fabric.

As particular families of random regular graphs, the Swan
fabrics have near optimal performance. The message latency
grows as J(lbg__, N} in the number of participants N, with
¢ being the number of connections at each node [12]. This
log-latency makes sessions with hundreds or thousands of
participants feasible. Moreover, the fabrics are reliable in the
face of multiple simultaneous communication link and process
failures.

Several additional innovations are made in Swan to sup-
port easy, quick, and reliable large-scale information sharing
around the globe. By using existing Internet protocols in non-
invasive ways, no special system administration, no operating
system modifications, and no special hardware is required.
All computers can participate, without requiring root access,
daemons, kernel modifications, or the addition of “well-
known” port numbers. Joining an information-sharing session
is automatic. Processes may join and depart at any time.

Though openly accessible, joining a Swan session is re-
stricted to those processes sharing the Swan code base and
aware of the correct channel designation. Swan is data-
agnostic and network-agnostic, and so supports additional
security features like VPNs and encryption.

Currently, Swan is implemented as a library in which the
point-to-point protocol is TCP/IP and each node maintains
¢ = 4 connections. These libraries have been compiled on

variants of UNIX, including IBM’s AIX, Hewlett Packard’s
HP-UX, Sun’s Solaris, and Linux; they have also been com-
piled on Windows 95/98/2000/Me/NT/XP, and the demos have
been used seamlessly across WiFi networks. The publish-and-
subscribe API for Swan features six classes, with from three
to twelve methods each. Behind this implementation, the core
technology is the subject of five US patents pending.

II. RELATED WORK

There are four categories of computer network communi-
cation systems that might be applied to the problem of wide-
area simultaneous sharing of information for the purpose of
digital collaboration. These are: 1) point-to-point networking
protocols, 2) client-server middleware, 3) multicast networking
protocols, and 4) peer-to-peer middleware.

A. Point-To-Point Networking Protocols

A number of point-to-point networking protocols exist to
allow direct one- or two-way communication between two
computer processes. Examples include UNIX pipes, TCP/IP,
UDP, IBM’s SNA, and Xerox’ XNS. Of these, only TCP/IP
and UDP are universally available for communication between
computers connected via the Internet.

Using point-to-point connections directly does not scale eas-
ily as the number of participating processes grows. A process
is limited in the number of such connections that can be made
(roughly 60), and managing even a single connection is a
complex task for programmers. Coordinating a communication
session involving even a modest number of connections exac-
erbates the program complexity enormously. For all of these
reasons, direct use of a point-to-point networking protocol
is not a feasible mechanism for sharing information across
a medium- to large-scale collaboration across a wide-area
network.

B. Client-Server Middleware

To alleviate the complexity of programming directly at the
network protocol level, client-server middleware is available
to provide an easier programming abstraction. In client-server
middleware, a number of “client” processes find or instantiate
a single “’server” process, forming a direct network connection
between them. The client may then request services from the
server, which often is given central authority over a resource,
such as a database. Examples include database servers, remote
procedure calls (RPC), and CORBA. A variety of commercial
offerings (e.g. PreCache, Jabber, Groove, Butterfly.net) offer
advanced client-server solutions in which the application pro-
grammer should focus on the clients as being peers.

The client-server paradigm provided by this middleware,
while providing a mechanism for sequenced resource sharing,
is an expensive and limiting approach to digital collaboration.
As sessions consume the limited resources of the existing
servers, more servers must be added to the farm, resulting
in a step-linear cost function for session support. Anticipating
session size and balancing loads become prominent areas of
applied research in the administration of these server farms.

Generally, resources are not well-used in client-server so-
lutions. Client resources tend toward underutilization, while
the resources of the servers are in excessive demand. Each
client conveys information directly to the server, and possibly
after some preprocessing and filtering, the server disseminates
the information either through routing lists or by being polled
by the clients. This creates a performance bottleneck as the
number of participants increases, adds undue latencies, and
wastes time with polls and heartbeats. The demands placed
on the servers to provide the communications infrastructure
drive the overhead in costs and administration for the resulting
server farms.

C. Multicast Networking Protocols

Multicast networking protocols allow selective broadcast
of messages to multiple recipients. It retains the complexity
of direct network communication mentioned above, but is a
natural choice for digital collaboration. Currently, multicast is
available for UDP messages, but virtually all UDP multicast
traffic is limited to a single local-area network or, at most, a
small set of connected local-area networks. UDP multicast, in
its current implementation, could easily swamp the Internet
otherwise, as it would have to saturate the Internet with each
message to find all possible participants.

Several wide-area multicast networking protocols have been
proposed [2], and some, such as IP Multicast, are in lim-
ited commercial and/or research deployment. Most of these
solutions require special router hardware and/or software to
achieve data sharing without overwhelming the participating
networks. Even if a standard solution were selected today,
it would take years, or possibly decades, before the entire
Internet infrastructure could be completely retrofitted with the
new technology.

Additionally, the solutions proposed in this area, in an
attempt to conserve bandwidth, are not constructed with re-
liability as a concern. By using spanning trees among the
routers involved, any node failure can temporarily partition
the collaborative session.

D. Peer-to-peer Middleware

Peer-to-peer middleware provides the programmer with a
software library that is intended to provide an easy-to-use
abstraction, such as “publish-and-subscribe” or “shared ob-
jects,” for immediately sharing information among a set of
collaborating processes. Hidden from the programmer is how
the actual communication takes place.

The underlying communication infrastructure may make
use of a multicast network protocol, or a graph of point-
to-point network protocols, or a combination of the two.
The infrastructure in commercial use today, in products such
as IBM’s Sametime, Data Connection’s DC-Share, and Mi-
crosoft’s NetMeeting, is the T.120 Internet standard. Given its
commercial prominence and its influence on other solutions,
we consider the limitations of T.120 as a solution for digital
collaboration.

1) T.120 Internet Standard: When first connecting to a
T.120 communication session on a given host computer, the
local application spawns both a proxy process (the MCU)
and a daemon process. The daemon process is a resident
process which instantiates the MCU and listens for additional
such requests. The MCU forms a direct connection to the
MCU of another host designated by the application user, or is
designated as the root of the session. The requesting process
and all additional processes on the host wishing to join the
session form a direct connection to the MCU process on that
host. To share information, a process sends a message to its
MCU, which is sent up the tree of MCUs to the root, then
down the tree of MCUs and disseminated among their attached
processes.

The responsibility of determining the topology of the con-
nection graph lies with the end-users. In addition to being
a nuisance to the users, it is not likely to result in an
efficient structure for performance. The most common kind
of connection scheme seen in practice is for all host MCUs
to connect directly to the root MCU, a star topology.

The MCUs create worst-case performance, reliability, and
scalability. All messages must be serialized through each MCU
to a potentially large number of processes on the host. Loss
of an MCU not only removes all of the processes on the host,
but also prunes the subtree attached to it from the session. The
need to coordinate all messages through the root MCU makes
that process a performance bottleneck and a single point of
failure for the session. This serialized messaging limits the
speed to the slowest host and/or communication link in the
tree.

Finally, the T.120 daemon must be installed on each host
participating in a session. This requires additional adminis-
tration and maintenance, and limits the set of hosts that can
join in a session. It also requires an additional “well-known”
port number, which must be coordinated globally among all
computers on the Internet.

2) Application-layer multicast: In response to the momen-
tum toward online collaboration and the lack of acceptable
infrastructures, there is a growing community of researchers
working on application-layer multicast [1]. This work builds
on earlier forays [3]-[6] into providing a platform for digital
collaboration. These technologies [3], [4] initially addressed
group communications among distributed devices, but the
growing markets for shared media, chat, online games, and
collaborative work have inspired a new wave of research [7]—
[11] into application-layer multicast. Commercial offerings in
these markets take sophisticated client-server approaches and
downplay the presence of the servers.

III. SWAN FABRICS

Swan fabrics use random #-regular graphs for the commu-
nication topology, with ¢ even and ¢ 2 4. Recall that a graph
is #-regular if every node is incident to exactly # edges. Each
node participating in the Swan session uses # 4 1 sockets,
¢ internal to the fabric and 1 shingle, a socket for handling

control messages external to the fabric. Currently, Swan is
implemented with the parameter # = 4.

Each node in the graph represents a Swan Herald, an
instantiation of the top-level class in this publish-and-subscribe
paradigm. Participating Swan processes instantiate Swan Her-
ald objects to act as their communication agents. Swan Heralds
share item announcements, to which they subscribe, with other
Swan Heralds on the same logical “channel.” These peer Swan
Heralds then publish these announcements within their own
processes.

Each edge in the graph represents a point-to-point connec-
tion between Swan Heralds. Currently Swan employs TCP/IP
network connections, an accepted Internet standard that pro-
vides reliable, ordered delivery along each connection. The
details of TCP/IP are encapsulated in a telephone abstraction,
allowing for easier maintenance and modular replacement by
other point-to-point protocols.

Swan Heralds are very flexible. They can co-exist in great
numbers on a single device. They can co-exist in the same
application. Swan Heralds are invisible to each other unless
they share the same logical channel. The Swan Heralds are
woven into the same fabric only if their logical channels are
identical; otherwise they belong to different fabrics and are
entirely independent of each other.

A Swan Herald channel is designated by two 32Z-bit keys:
a channel type, used to distinguish the application, such as
a particular CAD package, from other applications; and a
channel instance, which separates concurrent exercises of
the application, such as two distinct sessions of that CAD
package. Thus a single application can support multiple fabrics
for different communities or different levels of control, and
multiple applications of various types can run orthogonally to
each other on a single device.

A. Growing in general

In the general case, we have an #-regular graph on J¥ nodes,
and an additional node arrives. Swan chooses # 2 disjoint
edges at random and interposes the newcomer on each of them.
The result is an #-regular graph on ¥ 4+ 1 nodes. Visually
it looks like the newcomer has clothespinned the # /2 edges
together. This is illustrated in Fig. 1.

In fact, each half-edge corresponds to one of the # inter-
nal sockets maintained by some Swan Herald. This Swan
Herald disconnects this socket from its current neighbor and
reconnects to the newcomer. Extending the fabric in this way
involves only local operations, and it is minimally disruptive
— introducing a newcomer into an #-regular graph requires at
least # disconnections and # reconnections. Topologically the
Swan fabrics form certain families of #-regular graphs across
varying numbers of nodes.

While individual TCP/IP connections are designed to be
reliable, maintaining the reliability of the graph as a whole is
a different problem. At the graph level, what we are most con-
cerned about is avoiding a partition, where the graph becomes
separated, with two or more groups of participants talking only
amongst themselves, unaware that the other groups exist.

A graph is said to be tr-connected if it requires the removal
of # nodes to cause it to become partitioned. An #-regular
graph can at best be #-connected, since removal of one node’s
¢ neighboring nodes would isolate that node from the rest of
the graph. With high probability Swan fabrics are #-connected.
Swan can handle at least # — 1 near-simultaneous dropouts
without partitioning. In experiments with # = 4, we have
simultaneously killed a random sample of 4Q out of KK}
participating processes without warning, and the fabric has
repaired itself without losing any messages. These experiments
demonstrate that the particular sets of # nodes which would
partition the graph are well-hidden against random attacks.
Note also the specific construction in introducing a newcomer
enables Swan to maintain better-than-expected connectivity for
random graphs [13].

We extend the fabrics randomly since these random graphs
greatly outperformed all of the deterministic local rules we
could think of. The deterministic rules tended to be more
disruptive, and they led to much higher latencies. The latencies
in the Swan fabrics fall toward the middle of the range given
for #-regular random graphs [12]. The maximum number of
logical connections required to deliver a message corresponds
to the diameter & of the graph. For 4-regular random graphs on
XN nodes we have with high probability the following bounds
on the diameter:

|logs K]+ [logs o N — logz 12|+ 1 € &

and
d € [logs N + Ioga In N + Iogs 8] + 1.
Representative values for these bounds are tabulated here.
nodes = | 100 1K 10K 100K 1AM 10M
upper bnd g 11 i1 16 18 21
lower bnd 41 6 & 10 13 15

In simulations and tests up to several hundred nodes, the
diameters for the Swan fabrics have stayed near the average
of these two bounds. As examples, Swan fabrics of diameter 6
have accommodated 200 nodes, and a Swan fabric of diameter
T accomodated 45 nodes.

How can Swan find random edges with only local knowl-
edge? The newcomer has contacted one Swan Herald on its
shingle (see Section III-D below). This Swan Herald initiates
/2 drunk walks through the existing graph. If the fixed
lengths of these walks are long enough, then the nodes at the
ends of these walks are almost uniformly distributed across
the graph. Each of these # /2 nodes so selected picks one of
its edges at random and offers it to the newcomer, whose
address was part of the message sent on the drunk walk. The
newcomer checks that the edges are disjoint.

B. Small Regime

The graph cannot become #-regular until it has at least £+ 1
members. While the graph has fewer than ¥ 4+ 1 members, we
refer to it as being in the small regime. In the small regime,
we completely connect all participants. Swan Heralds make

Fig. 1.

Extending a Swan fabric. This example illustrates a sixteenth node joining a Swan fabric. The two dotted edges are selected at random and pinned

together at the new node, shown in bold. This modification uses only local knowledge and is minimally disruptive. The resulting fabric remains 4-regular, its
diameter grows as log & in the number of participants, and it tends to maintain 4-connectedness.

the transition seamlessly back and forth between the small
and large regimes.

C. Departures

Swan accommodates both graceful and ungraceful depar-
tures. In a graceful departure, a Swan Herald is instructed by
its application to disconnect from the fabric. In an ungraceful
departure, a Swan Herald dies for any number of reasons
but without sending any control messages. In either case, the
remaining Swan Heralds work to repair the fabric in such a
way as to maintain high connectivity and low diameter.

When disconnecting gracefully, a Swan Herald sends a
message to each of its neighbors alerting them to its departure.
This message lists the departing Herald’s neighbors. To facili-
tate smooth reconnection, the first pair of Swan Heralds in the
list attempt to connect directly to one another, while the second
pair do the same. Barring successful reconnection, the first and
third, and second and fourth, attempt direct connection.

When a Swan Herald departs ungracefully, it fails to alert
its neighbors. Instead, the loss is discovered by its neighbors
either immediately or, at the latest, when they next attempt
to send information to the dead Herald. Upon discovering
the loss of their neighbor, each of these Swan Heralds will
broadcast a general connection request through the graph.
Any Heralds which also lack a connection will respond and
form a direct connection with the message originator. While it
requires more effort than the disconnect mechanism, the under-
valent neighbors will quickly find each other and reconnect
properly.

During either disconnection or lost neighbor recoverys, it is
unlikely but possible to arrive in a state in which two nodes
which already share an edge are also in need of an additional
connection. These two Swan Heralds are in need of a con-
nection to repair the graph, but the only connections available
are to each other. A second connection to each other would
not restore the integrity of the graph. The general connection
request mentioned above is one of Swan’s safety nets. Through
the general connection requests, each will discover that their

neighbor needs a connection, just as they do. This is a first
hint that a pathological condition has occurred. However, this
situation can also arise when making the transition from the
large to the small regime. Swan includes the capability to
detect and resolve these pathological conditions, distinguishing
them from the small regime.

D. Rendevous Points

Unlike the systems surveyed in [1], Swan allows every
node to act as a Rendevous Point (RP) for the session. RPs
are necessary to provide newcomers a reasonable means for
finding an active session. With Swan, the RPs are provided
as an external list, which can be arbitrarily long and can also
be edited. The length of the RP list is less important than
the probability that a device on the list has a Swan Herald
currently participating on the right channel.

TCP/IP provides each device with a port space shared
among all processes. The higher numbered ports are desig-
nated as the user port space. When a process wishes to connect
to another, it must contact the destination process’ device at the
particular port number on which it is "listening.” This listening
device will then establish a link to a socket within the desti-
nation process. It isn’t possible to ask the destination device
which ports have listening processes. Instead, an attempted
contact will either succeed or fail depending on the existence
of a listener on the port.

The TCP/IP port space implementation brings up a number
of challenges. Not only must Swan Heralds find each other
on some selected port, but they must also be able to tolerate
conflicts from other processes using the shared port space.
Multiple Swan Heralds must be able to coexist on the same
host using the same port space as well. Since each attempt to
connect takes time, we must also limit how many port numbers
we’re willing to check.

Swan introduces an innovative scheme to meet these chal-
lenges without resorting to daemons or centralized session
managers. It uses the logical channel type and instance num-
bers to determine a sequence of ports to search. This method

minimizes possible conflicts with other, non-participating pro-
cesses. If a conflict arises either with another Swan Herald or
with any other process, the search is repeated until an available
port number is found.

When the Swan Herald object is created, it attaches a
listening socket, its shingle, to the first port available. It then
searches through its list of RPs for other Swan Heralds sharing
its channel, to find another participant’s shingle.

To prevent searching indefinitely for other participants, the
programmer also specifies the length of the sequence of ports.
This depth must not only be sufficient to seek past conflicts
with non-participants, but also past holes that can occur when
ports are released.

Initially, the first Swan Herald in a session searches all
specified RPs, searching to the maximum depth until it is
satisfied that no other parties exist in the session. If the Swan
Herald is on one of the RPs, and thus can be found by others, it
has succeeded in connecting to the fabric, currently consisting
of itself.

All subsequent Swan Heralds in the session will quickly
find a Swan Herald in this fabric, and make contact through
them. To join the session, the Swan Herald must successfully
perform a “secret handshake” to ensure that it is, in fact, a
Swan Herald, and that it belongs to the shared channel.

While searching, it is possible that two newcomers may
find each other. To prevent them from forming their own
separate session from one that may already exist at a greater
search depth, newcomers cannot use each other as contacts
for joining. Only after it has been woven into the fabric can
a Swan Herald be used as an RP.

E. Broadcasting

The Swan fabric acts as both the control topology and
the data topology. The main work of the fabric is to share
information among the attached Swan Heralds. Since the
fabrics are #-regular, #-connected, and of low latency, this
broadcasting of information can be done reliably and quickly.
Any Swan Herald with a message to share sends that message
to each of its neighbors. Each recipient of the message notes
the neighbor from whom it first received this message and
forwards it in turn to the other # — 1 neighbors.

The total number of individual messages sent between Swan
Heralds to share one announcement is (¥ — 1)A + 1. This
redundancy provides both reliability and performance. If a
Swan Herald fails in the course of a message broadcast, the
information has multiple other paths for reaching all other
Swan Heralds. These multiple paths also provide routes around
slow processes. A slow computer or communication link will
not significantly delay the sharing of information, as the
information will arrive at each Swan Herald by the fastest
path available.

This redundancy comes at a cost of increased message
traffic. This (¢ — 1)-fold duplication of each message at each
Swan Herald is a motivation for keeping # as low as possible.

As the message is forwarded, it is queued by each Swan
Herald to be announced within its process. Since each Swan

Herald will receive duplicates of each message, only the first
is forwarded and queued, then duplicates are dropped. Swan
uses an {J(1) algorithm to detect duplicates instantly. In this
way Swan maintains redundancy at the communications level
that is hidden from the application above.

Messages are ordered from each author before being an-
nounced. Because of the reliable nature of both the Swan graph
and the underlying TCP/IP connections, lost messages in the
stream are rare in the extreme. However, it is possible that as
a newcomer is joining the fabric, it arrives too late to receive
one message in a sequence, but happens to receive a prior
message that is still passing through the fabric.

While a remote possibility, we guard against acquiring such
holes in the message stream at the time of joining. Existing
Swan Heralds connecting to a newcomer do not forward
messages directly to the newcomer. Instead the messages are
queued according to their author until they can be delivered
in order, without holes. Thus, all of a newcomer’s neighbors
cooperate to prevent this potential problem from occurring.

IV. PERFORMANCE

In an effort to provide a solid distribution of Swan, we have
developed stress tests for it that challenge its construction,
destruction, and broadcasting functionality to ensure reliability
and scalability. These tests have shown Swan to be very
robust. By using the novel techniques we’ve described above
for the construction and repair of the Swan fabrics, and
paying attention to deadlock avoidance and other potential
interactions, in actual use a Swan session can accommodate
multiple simultaneous arrivals and departures of Swan Heralds
without difficulty. Sequenced arrivals and departures present
no difficulty, regardless of their number.

Swan has seen production use for collaborative design re-
views and for distributed computing. It has been demonstrated
in collaborative meeting software, auctions, and multiplayer
games. The Swan libraries can be compiled with minor
modifications for any platform that supports TCP/IP.

Swan is a catalyst for modular design of application suites.
Once the message format is agreed upon, any application
which traffics in this message format and has authorization
(including the correct channel type and instance numbers)
can participate in a Swan fabric. One common suite of these
complementary applications includes host processes, interact-
ing clients, and data stores. The host process handles metrics
and administration for a session: rosters, subscription, billing,
network monitoring. The interacting clients generate most of
the messages; these are the game clients, the collaborative
work applications, the CAD systems. The data stores provide
heavier data transfers. If the data files are large enough, they
will be passed along an overlay network; Swan acts as the
control topology to generate an efficient data topology [1].

If we assume uniformity among processors and commu-
nication links, the primary determinants of latency are the
maximum number of edges connected to a node (its valence)
and the maximum number of nodes between a source and
its destination. For example, the former would dominate in

a star topology, while the later would dominate in a a ring
topology. Swan fabrics have a fixed number of edges at each
node, and its diameter grows logarithmically in the number of
participants (Section III-A). The number of nodes must more
than double before the latency increases incrementally.

A. Bandwidth

Bandwidth is the limiting resource for a Swan fabric. The
relevant constraint at the ¥ node is

(¥ — 1)l < B;

in which g is the average volume of message traffic per node
per second, and B; is the bandwidth available to this node.
This constraint softens as more bandwidth becomes available.
It also indicates a trade-off between the size of a session
and the level of interactivity provided by the application. This
constraint reiterates the cost of redundancy (Section III-E) and
encourages us to keep ¥ = 4.

On the whole, a Swan fabric exhibits a bandwidth which is
some average of the bandwidths of all the participants. Nodes
which fall behind can be helped by their neighbors through
message culling, against priority flags or expiration tags.

B. Load Balancing

In situations in which some devices are known to have
greater bandwidth than the majority of participants, Swan
does support load balancing. To make fair use of this greater
bandwidth, the process on this device can instantiate more
than one Swan Herald in the same fabric. A simple overhead
routine manages these duplicated Swan Heralds, clearing out
duplicate messages for the application above and accelerating
the delivery of messages through this set of Swan Heralds.
A message sent by another node will arrive at one of this
set of Swan Heralds by the fastest route. While the message
continues to propagate through the Swan fabric, this Swan
Herald passes the message to the rest of the set, which forward
it from their locations in the logical fabric. The one process
can be present at several nodes in the same Swan fabric.

V. CONCLUSION

Swan is a significant advance in the infrastructure for digital
collaboration. Swan provides reliable and high-performance
sharing of information, that scales to hundreds or thousands of
asynchronous cooperating processes. It does this using gener-
ally available standard Internet protocols and requiring no sys-
tem modifications or administration. Currently implemented

to grow random 4-regular graphs of TCP/IP connections,
Swan provides latencies that grow as leygg &' in the number
of participants. It uses redundant messaging to accomodate
processes with slow connections, and to provide reliability
for the message stream when nodes depart. Swan has been
in production use since 1999 and is the subject of five US
patents pending.

Swan represents an enabling technology. With such an in-
frastructure one can envision a new generation of applications
for digital collaboration, for work or play. An airplane could
be designed and developed by twelve hundred engineers in a
massive, long-term shared CAD session. Command, Control,
Communication, and Intelligence applications could coordi-
nate hundreds of independent software agents. Multiplayer
games, with participants constantly joining and leaving, could
run indefinitely and without the expense of server farms. Swan
goes beyond the ”pull” and ”push” technologies currently seen
on the Internet, giving us the ability to share and collaborate
interactively.

REFERENCES

[1] S. Banerjee and B. Bhattacharjee, A comparative study of application
layer multicast protocols, manuscript, Dept. of Computer Science, U. of
Maryland, April 2003.

[2] K. Obraczka, Multicast transport protocols: a survey and taxonomy, /EEE
Communications Magazine, Jan. 1998, pp. 94-102.

[3] L. Rogrigues and P. Verissimo, xAMp: a multi-primitive group communi-
cations service, Proc. of 11th Symposium on Reliable Distributed Systems,
IEEE, 1992.

[4] L.A. Ciscon, et al., A distributed data sharing environment for teler-
obotics, Presence, 3, no. 4, Fall 1994, pp. 321-340.

[5] M. Parsa and J.J. Garcia-Luna-Aceves, Scalable Internet Multicast Rout-
ing, ICCCN’95, IEEE, pp.162-166.

[6] J. Liebeherr and B.S. Sethi, A scalable control topology for multicast
communications, /EEE Infocomm, 1998, pp. 1197-1204.

[7]1 R. Zhang and Y.C. Hu, Borg: a hybrid protocol for scalable application-
level multicast in peer-to-peer networks, NOSSDAV’03, Monterey, CA,
June 1-3, 2003.

[8] S.Q.Zhuang, et al., Bayeux: an architecture for scalable and fault-tolerant
wide-area data dissemination, NOSSDAV’01, Port Jefferson, NY, June 25-
26, 2001, pp. 11-20.

[9] 1. Stoica, et al., Chord: a scalable peer-to-peer lookup service for Internet
applications, Proc. of SIGCOMM’01, ACM, 2001, pp. 149-160.

[10] A. Rowstron, et al., SCRIBE: the design of a large-scale event notifica-
tion infrastructure, NGC’01, 2001.

[11] M. Castro, et al., Scalable application-level anycast for highly dynamic
groups, submitted.

[12] B. Bollobas and W. Fernandez de la Vega, The diameter of random
regular graphs, Combinatorica, 2, no.2, 1982, pp. 125-134.

[13] B. Bollobas, Random Graphs, Academic, London, 1985.

[14] DJ. Watts and S.H. Strogatz, Collective dynamics of ’small-world’
networks, Nature, 393, 4 June 98, pp. 440—442.

[15] G. Korniss, et al., Suppressing roughness of virtual times in parallel
discrete-event simulations, Science, 299, 31 Jan 03, pp. 677-679.

